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Abstract
Vision-and-Language Navigation (VLN) has
attracted widespread attention due to its prac-
tical significance. A robot that can understand
natural language instruction and interact with
the environment to achieve the target goal is
revolutionary for human society. This paper
presents a thorough review of VLN by sum-
marizing related papers in a structured manner.
We first categorize and introduce current VLN
benchmarks. Then we introduce solutions for
VLN. Next, we introduce current evaluation
metrics and tasks analysis. Finally, we discuss
future directions.

1 Introduction

Recent advances in deep learning, natural language
processing, computer vision, and reinforcement
learning have boosted the development of embod-
ied AI. Recently, Vision-and-Language Naviga-
tion (VLN) has been getting more attention since
the proposal of Room-to-Room dataset (Anderson
et al., 2018b). Vision-language navigation (VLN)
is the task of navigating an embodied agent to carry
out natural language instructions inside real 3D
environments.

Researchers have achieved success on Visual
Navigation in both simulated environments (Zhu
et al., 2017; Mirowski, 2019) and real environ-
ments (Mirowski et al., 2018). But it does not
involve text modality. Artificial intelligent agent in
VLN is capable of understanding natural language
instruction or even asking helps during the naviga-
tion process, which has a wider applicable scenario
in human society.

Unlike existing natural language robots con-
trol tasks, VLN requires agents to execute instruc-
tion in an unseen environment with photo-realistic
scenes. Over-simplified 3D environment structures
inevitably leads to agents’ poor performance in
real life. By using real images rather than rendered

ones (Beattie et al., 2016; Kempka et al., 2016; Zhu
et al., 2017), the agents build in VLN environment
can be better adapted to real life scenarios. Another
major difference is that VLN agents might actively
seek more information through natural language
rather only passively receive a short command from
human or another agent. More powerful language
ability enable an navigable agent to achieve more
complicated tasks.

Since the development of Room-to-Room (An-
derson et al., 2018b) dataset, VLN has witnessed
tremendous development in both benchmarks and
solutions. Environment has extended from indoor
such as apartment to outdoor such as street. The
instruction form extends from detailed route in-
struction to high-level goal instruction. The agent
is required to understand information from textual
modality and visual modality to learn the environ-
ment, and to navigate with sophisticate strategy to
reach the target goal. Each path in VLN contains
complex instructions and a sequence of changing
environment images. Various data-centric methods
are proposed. Methods are also proposed to learn
a better representation of the environment and the
instruction. The outcome of a navigation process
depends the navigation action decision in each step.
Methods are also proposed to learn a better action
strategy.

We structure this paper as follows. In section 2,
we categorize VLN tasks and introduce them sepa-
rately. In section 3 we talk about the current meth-
ods used for building VLN agent. In section 4,
we introduce commonly used evaluation metrics
and VLN tasks analysis. Finally, we discuss future
directions in section 5.

2 Tasks and Datasets

Many VLN tasks have been proposed out of the
significant value in real life. Vision-and language



navigation has been an increasingly popular area.
In order to build appropriate testbeds for the newly
proposed task, various benchmarks have been de-
veloped. The visual features of the datasets are
deeply connected with the simulators. Please refer
to Appendix A for more details about the datasets
and refer to Appendix B for more details about sim-
ulator commonly used to create VLN benchmarks.

Here we categorize VLN benchmarks according
to two dimensions, object availability level and lan-
guage level. object availability level defines how
hard it is to find the target goal. We set three lev-
els. In the first level, the agent can find the target
according to detailed step-by-step route descrip-
tion. In the second level, the agent is required
to find a remote target goal with a coarse naviga-
tion description, which means the agent needs to
reason a path in an unseen environment itself. In
the third level, besides reasoning a path, the agent
also need to manipulate the environment objects
to achieve the goal since the object might be hid-
den or need to change physical status. Another
dimension language ability level describes how the
agent is capable of natural language understanding
and expression. We also set three levels here. In
the first level, the agent can understand a natural
language instruction at the beginning. In the sec-
ond level, the agent is capable of sending signal
for help whenever it is unsure, and then understand
additional instructions. In the third level, more like
human, the agent asks questions in the form of natu-
ral language during the navigation, and understand
guidance for next steps in order to the navigation.

2.1 Route-Detailed Navigation Tasks

Given a detailed natural language instruction, an
agent needs to strictly follow it to reach the goal
target. Anderson et al. (2018b) built Matter-
port3D simulator and further created Room-to-
Room (R2R) Navigation benchmark based on Mat-
terport3D panoramic RGB-D dataset (Chang et al.,
2017). An embodied agent in R2R moves through
a house in the simulator jumping between adjacent
pre-defined panoramic viewpoints. Amazon Turker
manual wrote the instruction for each given path
in the environment. Each path has three differ-
ent instructions. The instruction will be provided
at the beginning of the navigation process to pro-
vided a detailed moving path. Here is an example:
”Head upstairs and walk past the piano through an
archway directly in front. Turn right when the hall-

way ends at pictures and table. Wait by the moose
antlers hanging on the wall.” Check Appendix D
for the leaderboard of R2R dataset.

All navigation paths in R2R contain at most
six edges and are shortest-to-goal paths. There-
fore, reaching the goal destination is not strongly
connected with following the language instruction.
Jain et al. (2019) joins one path with another path
whose start point is the endpoint of the former
one. Likewise, Room-6-Room (R6R) and Room-
8-Room (R8R) (Zhu et al., 2020b) are further pro-
posed to generate VLN dataset with longer paths.

R2R is also extended to includes languages other
than English. Ku et al. (2020) proposed Room-
Across-Room (RxR). RxR contains instructions
from English, Hindi, Telegu. The dataset has more
samples and the instructions in it are time-aligned
to the virtual poses of the instruction. Yan et al.
(2020) collected Room-to-Room (XL-R2R) to ex-
tend R2R with Chinese instruction.

In most current benchmarks, agents navigate
through pre-defined viewpoints. Krantz et al.
(2020) reconstructed the nav-graph-based R2R tra-
jectories in continuous environments and created
Vision-and-Language Navigation in Continuous
Environments (VLNCE). Irshad et al. (2021) pro-
posed Robo-VLN task where the agent has contin-
uous action spaces over long-horizon trajectories.

Various outdoor benchmarks are also proposed.
Mirowski et al. (2019) introduced the StreetLearn
task for outdoor navigation with photographic con-
tent from Google Street View. Mehta et al. (2020)
release raw Street panoramas need for TOUCH-
DOWN as an addition to the StreetLearn dataset.
StreetNav extends StreetLearn (Hermann et al.,
2020) with additional driving instructions from
Google Maps by randomly sampling start and goal
positions.

Based on Google Street View, Chen et al. (2019)
introduced the TOUCHDOWN. In this outdoor
VLN task, an agent first follows navigation instruc-
tions with real-life observations in New York City
and then identifies a location through reasoning in
natural language to find a hidden object.

Talk to Nav (Talk2Nav) (Vasudevan et al., 2021)
is an interactive visual navigation environment.
The dataset is annotated by Amazon Turker and
the navigational instructions are more realistic.

LANI (Misra et al., 2018) is a 3D navigation
environment and corpus, where an agent navigates
between landmarks following natural language in-



struction. They first generate reference paths that
pass near landmarks, then use Amazon Mechanical
Turk to annotate.

Blukis et al. (2018) proposed a quadcopter fly-
ing navigation task based on randomly generated
virtual environments in Unreal Engine. Following
the setting of LANI (Misra et al., 2018), Blukis
et al. (2019) create a quadcopter drone navigation
task, where the navigator flies between landmarks
following natural language instruction.

The pre-defined navigation instruction some-
times is still ambiguous to the complexity of the
environment. In that case, help from oracle would
be necessary. Chi et al. (2020) introduced Just
Ask, a task where an agent could ask humans for
help during the navigation process based on the
Room-to-Room dataset. To simulate a human who
could also occasionally makes mistakes, the oracle
agent who has access to the shortest path informa-
tion could give incorrect answers with a certain
probability. For now, no datasets requires agent to
actively ask more information in natural language
after given detailed route instruction. We do think
it is necessary if the environment is challenging
that the detailed initial instruction is not sufficient.

2.2 Object-Targeting Navigation Tasks

In real life, route-detailed instruction could even be
impossible such as in an unseen environment. More
often, instructions are more concise and contain
merely information the target goal, such as ”Bring
a spoon”.

Wu et al. (2018) proposed Concept-Driven Nav-
igation (RoomNav) task based on House3D en-
vironment. The goal is in the form ”go to X”,
where X is a pre-defined room type or object type.
Qi et al. (2020b) proposed Remote Embodied Vi-
sual referring Expression in Real Indoor Environ-
ments (REVERIE), in which given a remote object,
the agent locates the target with high-level natu-
ral language instructions. The agent navigates and
finds the object from multiple distracting candi-
dates. Zhu et al. (2021a) proposed a object location
task SOON where the agent is limited in a given
path during the searching process.

Based on Mattherport3D dataset, Nguyen et al.
(2019) proposed Vision-based Navigation with
Language-based Assistance (VNLA), where an
agent is trained to navigate indoors to find the target
objects by requesting and understanding the lan-

guage instructions from humans. Hanna (Nguyen
and Daumé III, 2019) is introduced to build a navi-
gation agent that could utilize help from language
assistants based on Matterport3D simulator. An
agent solving the tasks needs to request next-step
instruction CEREALBAR (Suhr et al., 2019) is a
collaborative task between a leader and a follower.
The two agents move in a virtual game environ-
ment to collect valid sets of cards. The follower
only has a first-person view and executes the in-
struction from the leader who has access to the
whole map.

In reality, navigation robots may use language
to ask for assistance and take actions based on the
feedback. Cooperative Vision-and-Dialog Naviga-
tion (CVDN) (Thomason et al., 2019b) is a dataset
of human-human dialogs. Besides deciding on the
next action, the navigation agent also needs to ask
questions for guidance. The oracle with extra infor-
mation about the next best steps needs to provide
answers. Thomason et al. (2019b) also proposed
a simplified version, Navigation from Dialog His-
tory (NDH) task, in which an agent will be trained
to navigate without asking questions and further
utilizing the response from the oracle. Banerjee
et al. (2020) presented Localization and Mapping
with Natural Language (RobotSlang) for coopera-
tive robot navigation. Dialog could also be helpful
in complex outdoor environment. de Vries et al.
(2018) introduced Talk the Walk dataset, in which
a guiding agent and a tourist agent interact with
each other to have the tourist navigate towards the
correct location. The guide has access to the map
but does not know where the tourist is. The tourist
navigates a 2D grid via discrete actions.

2.3 Manipulation-added Navigation

The target object might be hidden (The spoon is
in a draw), or the target object needs to be manip-
ulated (Need an sliced apple but only uncut one
found). In these scenarios, manipulation on objects
is necessary to accomplish the task. Based on in-
door scenes in AI2-THOR, Shridhar et al. (2020)
proposed ALFRED dataset, in which agents com-
plete household tasks in an interactive visual envi-
ronment. TEACh (Padmakumar et al., 2021) is a
dataset that studies object interaction and naviga-
tion with free-form dialog.



Interation
w/ Oracle

Task
Complexity

Route-Detailed Object-Targeting Navigation + Manipu-
lation

No Interaction *Matterport3D group;
*Google Street View Group;
LANI (Misra et al., 2018)

REVERIE (Qi et al., 2020b); Room-
Nav (Wu et al., 2018); SOON (Zhu
et al., 2021a)

ALFRED (Shridhar et al.,
2020)

Guidance Only Just Ask (Chi et al., 2020) VNLA (Nguyen et al., 2019);
HANNA (Nguyen and Daumé III,
2019); CEREALBAR (Suhr et al.,
2019)

-

Dialog - CVDN (Thomason et al., 2019b);
RobotSlang (Banerjee et al., 2020);
Talk the Walk (de Vries et al., 2018)

TEACh (Padmakumar et al.,
2021)

Table 1: Vision-and-Language Navigation datasets. *Matterport3D group includes Room-to-Room (Anderson
et al., 2018b), Room-for-Room (Jain et al., 2019), R6R, R8R (Zhu et al., 2020b), Room-Across-Room (Ku
et al., 2020), XL-R2R (Yan et al., 2020), VLNCE (Krantz et al., 2020). *Google Street View includes
StreetLearn (Mirowski et al., 2019); StreetNav (Hermann et al., 2020), TOUCHDOWN (Chen et al., 2019)
Talk2Nav (Vasudevan et al., 2021).

3 Methods

Many methods are proposed from different perspec-
tives for VLN tasks. In the original setting (An-
derson et al., 2018b), the agent can not explore the
test environment before executing the VLN tasks.
Whether have prior access to explore the test envi-
ronment or not are under different VLN setting, and
we firstly introduce the prior exploration methods.

Based on the given training data and optional ad-
ditional data, the VLN agents understand the vision
and language information and make navigation de-
cision each step to reach the goal target. For the
methods that could be used in both settings, we cat-
egories them into Representation Learning, Action
Strategy Learning, Data-Centric Learning.

3.1 Prior Exploration in Test Environment

There is a performance gap between the seen envi-
ronments and unseen environments for VLN agents.
In the original setting of VLN (Anderson et al.,
2018b), the agent should be tested in an unseen
environment. Meanwhile, allowing an agent to
freely explore the new environment before execut-
ing tasks is also of practical benefit because it helps
to adapt to a new environment such as house or
apartment. Note the performance in this setting
should not be directly compared with the one with-
out prior exploration for agent evaluation purpose.
Here we survey the methods for prior exploration
in Test Environment.

(Fried et al., 2018) explores various possible tra-
jectories following the instruction in each session.
Then they rank the exploration trajectories based

on the likelihood of the instructure based on the
prediction out a trained speaker model. The ex-
ploration process could also offer more fine-tuning
signal to further update the VLN model. Wang et al.
(2019) first introduced a matching critic measuring
the compatibility between the instruction and the
navigation path. For an unseen environment where
no label navigation data are available and given tex-
tual instruction, the navigator is trained to follow
the path the matching critic gives a high score.

Besides exploring different possible trajectories
every time before starting each session, the agent
could also explore once to construct a overview
about the environment. Chen et al. (2021a) pro-
posed to build topological maps after the agent
freely explored the environment. They leverages at-
tention mechanisms to predict a navigation plan in
the map and then execute the plan in action space.
Zhou et al. (2021) considers the shortest-path route
prior and regard VLN as a node classification prob-
lem after pre-exploring the environment.

3.2 Representation Learning

Understanding of information from both text and
vision is essential for correct navigation decision.
Here we introduce methods towards a better under-
standing of the perceived information.

3.2.1 Pre-training
Due to the excellent performance of the
transformer-based pre-training model in various
areas, it is natural to apply pre-training technology
into the VLN model. Pre-training provides a rel-
ative good initialization from the knowledge in a



close domain.

To take advantage of the natural language un-
derstanding ability of the pre-training model, Li
et al. (2019) proposed PRESS to leverage large
pre-training model BERT (Devlin et al., 2019) and
GPT (Radford et al., 2019) as the encoder to im-
prove the instruction understanding and robust-
ness on the unseen environment. Pashevich et al.
(2021) proposed Episodic Transformer (E.T.) that
is equipped with various encoders to process differ-
ent modalities. They pre-train the language encode
by predicting synthetic instruction.

Visual information process also proves benefi-
cial. Hao et al. (2020) trains a visual-textual BERT
model on a large amount of image-text-action
triplets from scratch to learn textual representations
on VLN tasks. Their proposed PREVALENT takes
image-text-action triplets as input and is trained to
predict the masked tokens and the next action in a
self-learning paradigm. Qi et al. (2021) proposed
an an object-and-room informed sequential BERT
to encode instructions and visual observations in
words and object level, which strenghthen between
the objects’ mention and objects’ visual features.

A closer relation between the pre-training task
and down-stream task usually leads to a better per-
formance. Researchers also explored pre-training
on VLN task directly. By viewing VLN as a path
selection problem, VLN-BERT (Majumdar et al.,
2020) pre-trains navigation model from web image-
text pairs to measure the compatibility between
path and instruction based on ViLBERT (Lu et al.,
2019). VLN can be considered a partially observ-
able Markov decision process, where the future
rendered scenes are dependent on the current scene
and navigation action. Meanwhile, the transformer-
based pre-training model usually does not consider
such interaction with the environment by design.
Hong et al. (2021) equips a BERT pre-trained on
visual-textual knowledge with a recurrent function.
A BERT-structured model leverages the history rep-
resentations without increasing module volume by
re-using the state from the CLS token.

Researchers also collected extra pre-training cor-
pus for VLN. Guhur et al. (2021) collected a large-
scale in-domain dataset for pre-training on vision-
and-language navigation task. They further built
Airbert based on the proposed dataset and achieved
good performance on few-shot setting. Majumdar
et al. (2020) also proposed to use the resourceful in-
ternet contains potentially large-scale pre-training

material.

3.2.2 Graph Representation

Objects in visual scenes and concepts in instruc-
tions has a strong logical relation. Building a graph
for the relation offers a better a explicit represen-
tation for these information. Hong et al. (2020a)
proposed Language and Visual Entity Relationship
Graph for modelling the inter-modal relationships
between text and vision, and the intra-modal re-
lationships among visual entities to capture and
utilize the relationships. They used a message pass-
ing algorithm for propagating information between
language elements and visual entities in the graph
which determines the next action to take. Building
a graph to represent the environment also provides
valuable guidance. Deng et al. (2020) introduced
Evolving Graphical Planner (EGP) that constructs
a graph of the navigable environment during the
exploration process. The navigator reasons over
the graph to select the next navigable node among
action space. Anderson et al. (2019) proposed a
mapper that constructs a semantic spatial map on-
the-fly during navigation, and an end-to-end dif-
ferentiable Bayes filter to identify the goal by pre-
dicting the most likely trajectory through the map
according to the instructions.

3.2.3 Memory Structure

VLN could involve prolonged navigation
steps (Padmakumar et al., 2021; Krantz et al.,
2020; Zhu et al., 2020b). Effetively remember-
ing and utilzing important information during
the navigation history is essential for making
correct decision. Toward this, various specific
memory structures are proposed. Lin et al. (2021)
introduced a Memory-augmented attentive action
decoder to help the agent to learn where to stop and
what to attend to. Nguyen and Daumé III (2019)
proposed a memory-augmented neural agent to
model decision making at a different level and an
imitation learning algorithm that teaches the agent
to avoid repeating past mistakes. Zhu et al. (2020c)
proposed Cross-modal Memory Network (CMN)
to remember relevant information in both textual
modality and image modality. To effectively
memorize information in long trajectory, Chen
et al. (2021b) proposed a hierarchical encoding of
the panoramic observation history



3.2.4 Attention Structure
Concepts and objects that are relevant to current
step decision making should receive a high atten-
tion. Various attention structures are also proposed
toward a better information understanding of tex-
tual and visual modality.

Landi et al. (2019) employed dynamic convolu-
tional filters to attend the visual scene and control
the actions of the agent. The convolutional filters
are produced via an attention mechanism and are
also utilized in the scene to which the navigator
moves. (Zhang et al., 2020a) designed a cross-
modal grounding module composed of two com-
plementary attention mechanisms to track the cor-
respondence between the textual and visual modal-
ities. Landi et al. (2020) presented Perceive, Trans-
form, and Act (PTA), where text, vision, and action
are merged with a fully transformer-based model
without the usage of the recurrent function. (Qi
et al., 2020a) proposed Object-and-Action Aware
Model (OAAM) that processes object description
and direction description contained in the instruc-
tion separately. Gao et al. (2021) proposed Room
and-Object Aware Attention (ROAA) mechanism
to explicitly perceive the room- and object-type
information from both instruction and visual obser-
vations.

3.2.5 Multi-task Learning
VLN shares similar modality understanding with
other Vision-and-Language tasks and thus it is pos-
sible to improve both via multi-task learning.

Visual representation model tends to overfit in
seen environments. Wang et al. (2020c) proposed
an environment agnostic learning method to learn a
visual representation to generalize better on unseen
environments. The learning target is to build a la-
tent representation that is invariant among the seen
environment to mitigate the overfitting problem.
Chaplot et al. (2020) proposed attention module
to train a multi-task navigation agent to follow in-
structions and answer questions.

3.2.6 Auxiliary Tasks
A VLN environment and instruction usually con-
tain much information that is relevant to the task
goal. Therefore, except only using the signal from
the navigation target, various auxiliary tasks are
proposed to utilize the informative environment.

Textual instructions in VLN may contain step-
by-step guidance. The navigator needs to be aware
of the navigation progress and the relation between

the navigation path and instructions. Wang et al.
(2019) train a matching model to score the degree to
which the navigation path follows instruction. The
matching score is used as a reinforcement learn-
ing reward signal and a direction signal in an un-
seen environment. Ma et al. (2019a) introduces
Self-Monitoring navigation to estimate progress
made towards the goal using vision and language
co-grounding. The proposed agent identifies the
correct direction by finding which part of the in-
struction is aligned with the current observation.
The navigator leverages a progress monitor to es-
timate the distance between the current viewpoint
and the final goal position, conditioning on navi-
gation history and instruction. To better utilize the
rich semantic information contained in the envi-
ronments, Zhu et al. (2020a) proposed four self-
supervised auxiliary reasoning tasks to help the
agent to acquire knowledge of semantic represen-
tation, i.e., 1) trajectory retelling task to explain
previous actions; 2) progress estimation task to
evaluate the task completeness; 3) angle predic-
tion task to predict the turn angel for next step; 4)
cross-modal matching task to align the vision and
the language information. Without extra labeling
cost, Huang et al. (2019b) defines Cross-Modal
Alignment to assess the fit between instruction and
path, and Next Visual Scene, which predicts latent
representations of future visual inputs in the path.

3.3 Action Strategy Learning

VLN agents navigate a long path with many deci-
sion steps to reach the target goal. With the neces-
sity to make decision at each step, the agents faces
with tremendous navigation paths choices in a com-
plex 3D environment. Here we introduce methods
on the action strategy learning process.

3.3.1 Instruction Conditioned Navigation
(Kurita and Cho, 2020) introduced a generative
language-grounded policy that considers available
actions at each step and use Bayes’ rule to obtain
the posterior disctribution over actions conditioned
on the natural language instruction. The agent navi-
gates in the environment by choosing an action that
maximizes the probability of the entire instruction
on a language model.

3.3.2 Exploration during Navigation
Exploring the environment and gathering informa-
tion during the navigation process provides a clear
observation of the local environment. Beam search



is a commonly used exploration strategy for find-
ing a better trajectory (Anderson et al., 2018b; Ma
et al., 2019a,b; Tan et al., 2019). It avoids bad
actions in next step by looking ahead and scoring
multiple global trajectories. More sophisticated ex-
ploration strategies are also proposed toward the
complexity of the VLN task.

Wang et al. (2020a) developed a more active ex-
ploration module on unseen environments. The
agent learns to select among visual features of dif-
ferent navigable views and a STOP action. The
agent stops exploring and makes navigation deci-
sions when choosing the STOP action. They further
designed a recurrent network-based multi-step ex-
ploration mechanism until sufficient information
was collected.

Instead of implicitly keeping information about
the environment into neural weights, Some works
explicitly store the overall knowledge from explo-
ration history. Liyiming Ke (2019) introduced
Frontier Aware Search with backTracking (FAST).
FAST combines global and local knowledge to
compare partial trajectories of different lengths and
backtrack when making mistakes—the agent back-
track when the progress estimator gives a low score
for the current action. Ma et al. (2019b) proposed
Regret Module based on a progress estimator (Ma
et al., 2019a). They first proposed Regret Module
that decides whether to continue moving forward or
roll back to a previous state. Then they introduced
Progress Maker that helps to navigate according to
the progress score.

Koh et al. (2021) designed Pathdreamer, a visual
world model for indoor environment to synthesizes
high-resolution visual observation along a trajec-
tory in future viewpoints. VLN model benefits
greatly from the generated observation without ac-
tual looking ahead.

3.3.3 Reinforcement Learning
In reinforcement learning (RL), agents aim to max-
imize cumulative rewards. In this way, reinforce-
ment learning could be brought into this Markov
Decision Process (MDP). A navigation agent in-
teracts with the environment during the navigation
process, making a decision based on the latest en-
vironment. An increasing number of researchers
have applied deep reinforcement learning to vision-
and-language navigation.

Wang et al. (2019) proposed a reinforced cross-
modal matching (RCM) for VLN tasks that en-
forces cross-modal grounding both locally and

globally via deep reinforcement learning. The real-
world environment has rich dynamics. Wang et al.
(2018) bridge the gap between synthetic studies
and real-world practices by combining model-free
and model-based reinforcement learning to predict
the next state and reward. One problem in imple-
menting reinforcement learning into VLN is the
sparsity of reward since it only receives success
or fail signal at the end of the session. ? pro-
posed Soft Expert Distillation module to reward the
agent higher when it takes action similar to expert’s,
and a Self Perceiving module that rewards accord-
ing to the predicted navigation schedule. Distance
to the target goal (Roman et al., 2020), matching
critic (Wang et al., 2019; Ma et al., 2019a) could
also provide informative reward. (Zhang et al.,
2020a) proposed to recursively alternate the learn-
ing schemes of imitation and reinforcement learn-
ing to narrow the discrepancy between training and
inference.

3.3.4 Communication-based Navigation
Being able to ask for help when uncertain about
next action. Recently, researchers have also been
building navigable agents that can send signal to
request help or even communicate in natural lan-
guage with humans for help.

Roman et al. (2020) proposed Recursive Mental
Model (RMM) composed of a Questioner, a Navi-
gator, and a Guide with three sequence-to-sequence
models. Suhr et al. (2019) introduced a learning
structure to distinguish recovery reasoning required
for generating implicit actions and actions men-
tioned in regular instruction. Nguyen et al. (2019)
proposed Imitation Learning with Indirect Interven-
tion (I3L). An advisor modified the environment to
influence the agent’s decision in both training time
and test time. Zhu et al. (2021c) proposed SCoA
to determine whether and what to ask help from
oracle.

3.3.5 Other Strategies
The agent needs to make decision in a larger ac-
tion space In continuous environment. (Krantz
et al., 2021) develops a waypoint prediction net-
work (WPN) that predicts relative waypoints based
on natural language instructions and panoramic
vision.

3.4 Data-Centric Learning

Data is an essential component in current machine
learning paradigm. Vision-and-language naviga-



tion involves information from different modalities.
Methods are also proposed from different aspects
of the training data.

3.4.1 Data Augmentation
Compared with the large navigation space, compli-
cated scenes and invariance of the textual instruc-
tion, the training data is relatively sparse. Various
data augmentation methods are proposed towards
the scarcity of VLN datasets.

The training set could be directly augmented
via generating more path-instruction pairs from
the navigable environments. Fried et al. (2018)
trains a speaker module to generate textual instruc-
tion given navigation paths. The proposed speaker
model could further boost the performance by rank-
ing the path candidates during test time. The gen-
erated data used for augmentation could have vari-
ous levels of quality. Huang et al. (2019b) scores
the cross-modal alignment to differentiate high-
quality pair from low-quality pair in the data gen-
erated by Fried et al. (2018). Huang et al. (2019a)
introduced a multi-modal discriminator to select
valuable samples from augmented paired vision-
language sequence data. They showed that a small
portion of high-quality augmented data achieved
similar performance with complete augmented data.
Yu et al. (2020) proposed a path sampling method
based on random walks to augment the training
data in Room-to-Room dataset to mitigate the po-
tential biases in the augmentation process. With
the augmented data, the generalization gap between
seen and unseen environments is significantly re-
duced. Fu et al. (2020) proposed an adversarial
path sampler to generate challenging paths. They
introduced an adversarial path sampler to select
paths that are challenging for the navigator.

Due to the rich information contained, the nav-
igation environment itself could also be used to
generate augmented data. Tan et al. (2019) use ad-
ditional training data generated via back-translation
and visual features masking based on Fried et al.
(2018). They randomly mask the same visual fea-
ture in different viewpoints so that the environment
is unseen to the agent to some extent. Liu et al.
(2021) proposed Random Environmental Mixup
(REM) to split the house scenes and then to mix up
to get cross-connected house scenes as augmented
data. Seeing different house scenes during one
navigation trip makes the agent less likely to over-
fit in seen houses and generalize better in unseen
environments.

Textual information in VLN may also be used for
data augmentation. Hong et al. (2020b) proposed
Fine-Grained R2R dataset enrich Room-to-Room
dataset with sub-instruction. They further intro-
duced sub-instruction attention and shifting mod-
ules that sub-instructions at each time-step to use
the alignment information between the instruction
and the environment.

Data augmentation has proven essential in VLN
tasks, and curriculum learning has been used to gen-
erate high-quality augmentation data. Huang et al.
(2019a) used curriculum learning to train a discrim-
inator to distinguish high-quality augmented data.
They also show the efficacy of curriculum learning
by extensive analysis. Fu et al. (2020) proposed
adversarial path sampler (APS) that learns to select
out counter-factual augmented data. The sampler
keeps learning during the selection process, and
thus the selected data have a closer distribution
with the original dataset.

Parvaneh et al. (2020) intervenes in visual fea-
tures to generate counterfactual trajectory via min-
imal edit. They improve agent’s capabilities to
generalise to new environments at test time with
both training data and their counterfactuals.

3.4.2 Curriculum Learning
Curriculum learning (Bengio et al., 2009) has re-
ceived widespread attention. The task’s difficulty
level is gradually increased during the training pro-
cess as the model keeps improving learning ability.

3.4.3 Sub-Instruction
The instruction in VLN tasks provides target goals
and guidance. A navigator interprets instructions in
a changing environmental context. Xia et al. (2020)
presented LEARN FROM EVERYONE (LEO) to
leverage multiple instructions for the same trajec-
tory. Each instruction provides a different angle to
describe the trajectory, and LEO encodes all the
instructions with a shared set of parameters. In-
struction could be long and complicated. To better
understand the relation between the visual scenes
during navigation with all parts of the given instruc-
tion, Hong et al. (2020b) splits the long instruction
in the R2R dataset into short sub-instructions and
align the sub-instructions with visual sequences.
With the enhanced sub-instructions, the agent is
provided with more detailed supervision from a
language perspective. They further train a sub-
instruction selection model to focus on important
sub-instruction.



BabyWalk (Zhu et al., 2020b) apply curriculum
learning in VLN from the textual instruction per-
spective. Curriculum-based reinforcement learn-
ing with increasing longer instructions is leveraged
to increase the language understanding ability of
the VLN agent. During the training process, the
instructions change from short segments of the in-
structions in the R2R dataset to the long instruc-
tions in the R8R dataset.

3.4.4 Extra Environment Signal

(An et al., 2021) designed multi-module Neighbor-
View Enhanced Model (NvEM) to incorporate vi-
sual contexts from neighbor views since the instruc-
tion may mention landmarks out of a single view.

4 Evaluation

4.1 Evaluation Metrics

Many metrics (Anderson et al., 2018b) have been
proposed to evaluate the performance of a VLN
agent on the R2R dataset. 1) Navigation Error (NE)
is the distance between the last node in the navi-
gation path and the goal location. 2) Success Rate
(SR) evaluates the ratio of navigation error is less
than 3m. 3) Path Length (PL) is the total length
of the navigation path. 4) Success weighted by
Path Length (SPL) (Anderson et al., 2018a) consid-
ers both Success Rate and Path Length. 5) Oracle
Navigation Error (ONE) takes the smallest distance
from any node in the path rather than just the last
node. 6) Oracle Success Rate (OSR) measures if
any node in the path is within 3m from the target lo-
cation rather than only the last one. These metrics
also apply to all the R2R variants datasets as fol-
lowing. PC (Path Coverage) measure how well the
predicted path covered the nodes on the reference
path. CLS (Jain et al., 2019) is the product of the
Path Coverage (PC) and LS of the agent’s path with
respect to reference path. It measures how closely
an agent’s trajectory conforms with the entire ref-
erence path Normalized Dynamic Time Warping
(nDTW) (Ilharco et al., 2019) softly penalizes de-
viations from the reference path to calculate the
match between two paths. Success weighted by
normalized Dynamic Time Warping (SDTW) (Il-
harco et al., 2019) further constrains nDTW to only
successful episodes to captures both success and
fidelity.

4.2 Task Evaluation

Agents’ performance with and without prior explo-
ration on test set should be compared directly.

Thomason et al. (2019a) Unimodal could per-
formance very well on many multimodal tasks, in-
cluding VLN. Therefore baselines should also con-
sider using unimodal. Hu et al. (2019) had a sim-
ilar conclusion that visual features could hurt the
VLN models’ performance. They analyzed what
extent object-based representations and mixture-of
experts methods can address these issues.

Jain et al. (2019) found that paths in R2R dataset
are direct-to-goal shortest paths, and thus the agents
does not need to strictly follow the path to reach
the target goal.

(Zhang et al., 2020b) analyzed the performance
difference between seen and unseen environment
and observed that low-level visual features affects
the agent model. They proposed to use semantic
representation that contains less low-level features.

Zhu et al. (2021b) diagnose the existing VLN
method on popular benchmarks. Their results show
that indoor navigation agents refer to direction to-
kens in the instruction heavily and the agents also
set the sights on objects further from the current
viewpoint. They also cast doubt on the alignments
in vision-and-language claimed in many models.

Generating instruction based on paths has been
frequently used in data augmentation process.
However, Zhao et al. (2021) found these generated
instructions are on par with or only slightly better
than instructions generated by a template according
to human evaluation.

5 Future Directions

Data scarcity is a common problem, and various
data augmentation methods have been proven help-
ful in general VLN tasks. However, data augmen-
tation could be costly, especially for high-quality
data. Meanwhile, there are abundant raw data on
text, image, and generation navigation area. Suc-
cessful adaptation into the VLN domain could lead
to a tremendous performance boost.

Instead of working on a synthetic visual envi-
ronment, most VLN datasets are built on photo-
realistic scenes. However, there is still a gap in
real-life robot navigation (Anderson et al., 2020).
For example, the real robot has more action space;
meanwhile, current benchmarks usually only allow
agents to navigate through the pre-defined graph.
To built benchmark and further build navigator in a



more physical world is of practical significance.
Current VLN benchmark and methods mainly

focus on tasks where only one agent is required
to navigate. However, complicated tasks in real
may requires the collaboration of several robots.
Multi-agents VLN tasks still faces many obstacles
in structure design, information communication,
and performance evaluation.

The training corpus of VLN involves informa-
tion from various modalities, which leads to po-
tential hacking risk. Also, when implemented in
reality, VLN agent navigates in both indoor and
outdoor would have access to sensitive information
such as environment scenes, human faces. Ethical
concern is also not well studied in VLN.

6 Conclusion

In this paper, we presented a comprehensive survey
of vision-and-language navigation. We categorized
the benchmarks and the methods. We also provided
the current evaluation metrics and task analysis.
Finally, we discussed future direction. VLN is of
significant meaning and is still not well-explored.
Researchers new to this area could find this paper
useful due to its systematic review.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Valts Blukis, Nataly Brukhim, Andrew Bennett,
Ross A. Knepper, and Yoav Artzi. 2018. Follow-
ing high-level navigation instructions on a simulated
quadcopter with imitation learning. In Robotics:
Science and Systems (RSS).

Valts Blukis, Yannick Terme, Eyvind Niklasson,
Ross A. Knepper, and Yoav Artzi. 2019. Learning to
map natural language instructions to physical quad-
copter control using simulated flight. In Conference
on Robot Learning (CoRL).

Angel Chang, Angela Dai, Thomas Funkhouser, Ma-
ciej Halber, Matthias Niessner, Manolis Savva, Shu-
ran Song, Andy Zeng, and Yinda Zhang. 2017. Mat-
terport3D: Learning from RGB-D data in indoor en-

vironments. International Conference on 3D Vision
(3DV).

Devendra Singh Chaplot, Lisa Lee, Ruslan Salakhutdi-
nov, Devi Parikh, and Dhruv Batra. 2020. Embodied
multimodal multitask learning. In Proceedings of
the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, pages 2442–2448.
International Joint Conferences on Artificial Intelli-
gence Organization. Main track.

Howard Chen, Alane Suhr, Dipendra Misra, Noah
Snavely, and Yoav Artzi. 2019. Touchdown: Nat-
ural language navigation and spatial reasoning in vi-
sual street environments. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 12530–12539.

Kevin Chen, Junshen K Chen, Jo Chuang, Marynel
Vázquez, and Silvio Savarese. 2021a. Topological
planning with transformers for vision-and-language
navigation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 11276–11286.

Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid,
and Ivan Laptev. 2021b. History aware multi-
modal transformer for vision-and-language naviga-
tion. arXiv preprint arXiv:2110.13309.

Ta-Chung Chi, Minmin Shen, Mihail Eric, Seokhwan
Kim, and Dilek Hakkani-tur. 2020. Just ask: An
interactive learning framework for vision and lan-
guage navigation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
2459–2466.

Zhiwei Deng, Karthik Narasimhan, and Olga Rus-
sakovsky. 2020. Evolving graphical planner: Con-
textual global planning for vision-and-language nav-
igation. Advances in Neural Information Processing
Systems, 2020-December.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT (1).

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. 2018. Speaker-follower models
for vision-and-language navigation. In Neural Infor-
mation Processing Systems (NeurIPS).

Tsu-Jui Fu, Xin Eric Wang, Matthew Peterson, Scott
Grafton, Miguel Eckstein, and William Yang Wang.
2020. Counterfactual vision-and-language naviga-
tion via adversarial path sampler. In European Con-
ference on Computer Vision (ECCV).

Chen Gao, Jinyu Chen, Si Liu, Luting Wang, Qiong
Zhang, and Qi Wu. 2021. Room-and-object aware
knowledge reasoning for remote embodied referring
expression. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 3064–3073.

https://arxiv.org/abs/2010.12639
https://arxiv.org/abs/2010.12639
https://doi.org/10.1109/CVPR.2019.01282
https://doi.org/10.1109/CVPR.2019.01282
https://doi.org/10.1109/CVPR.2019.01282


Pierre-Louis Guhur, Makarand Tapaswi, Shizhe Chen,
Ivan Laptev, and Cordelia Schmid. 2021. Airbert:
In-domain pretraining for vision-and-language nav-
igation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV),
pages 1634–1643.

Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin,
and Jianfeng Gao. 2020. Towards learning a generic
agent for vision-and-language navigation via pre-
training. Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Karl Moritz Hermann, Mateusz Malinowski, Piotr
Mirowski, Andras Banki-Horvath, Keith Anderson,
and Raia Hadsell. 2020. Learning to follow direc-
tions in street view. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
11773–11781.

Yicong Hong, Cristian Rodriguez, Yuankai Qi, Qi Wu,
and Stephen Gould. 2020a. Language and visual
entity relationship graph for agent navigation. Ad-
vances in Neural Information Processing Systems,
33:7685–7696.

Yicong Hong, Cristian Rodriguez, Qi Wu, and Stephen
Gould. 2020b. Sub-instruction aware vision-and-
language navigation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3360–3376, On-
line. Association for Computational Linguistics.

Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-
Opazo, and Stephen Gould. 2021. Vln bert: A re-
current vision-and-language bert for navigation. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
1643–1653.

Ronghang Hu, Daniel Fried, Anna Rohrbach, Dan
Klein, Trevor Darrell, and Kate Saenko. 2019. Are
you looking? grounding to multiple modalities in
vision-and-language navigation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6551–6557, Florence,
Italy. Association for Computational Linguistics.

Haoshuo Huang, Vihan Jain, Harsh Mehta, Jason
Baldridge, and Eugene Ie. 2019a. Multi-modal dis-
criminative model for vision-and-language naviga-
tion.

Haoshuo Huang, Vihan Jain, Harsh Mehta, Alexander
Ku, Gabriel Magalhaes, Jason Baldridge, and Eu-
gene Ie. 2019b. Transferable representation learning
in vision-and-language navigation. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision (ICCV).

Gabriel Ilharco, Vihan Jain, Alexander Ku, Eugene Ie,
and Jason Baldridge. 2019. General evaluation for
instruction conditioned navigation using dynamic
time warping. arXiv preprint arXiv:1907.05446.

Muhammad Zubair Irshad, Chih-Yao Ma, and Zsolt
Kira. 2021. Hierarchical cross-modal agent for
robotics vision-and-language navigation. arXiv
preprint arXiv:2104.10674.

Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish
Vaswani, Eugene Ie, and Jason Baldridge. 2019.
Stay on the path: Instruction fidelity in vision-and-
language navigation. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 1862–1872, Florence, Italy. Asso-
ciation for Computational Linguistics.

Michał Kempka, Marek Wydmuch, Grzegorz Runc,
Jakub Toczek, and Wojciech Jaśkowski. 2016. Viz-
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A Dataset Details

B Simulator

The virtual features of the dataset are deeply con-
nected with the simulator in which datasets are
built. Here we summary frequently used simula-
tors during the VLN dataset creation process.

House3D (Wu et al., 2018) is a realistic virtual
3D environment built based on SUNCG (Song
et al., 2017) dataset. An agent in the environ-
ment has access to the visual RGB signal of the
first-person view, together with semantic/instance
masks and depth information.

Matterport3D (Anderson et al., 2018b) simula-
tor is a large-scale visual reinforcement learning
simulation environment for research on embod-
ied AI based on the Matterport3D dataset (Chang
et al., 2017). Matterport3D contains various in-
door scenes, including houses, apartments, hotels,
offices, and churches. An agent can navigate be-
tween viewpoints from the pre-defined graph. Most
indoors VLN datasets such as R2R and its variants
are based on the Matterport3D simulator.

Habitat (Manolis Savva* et al., 2019; Szot et al.,
2021) is a 3D simulation platform for training em-
bodied AI in 3D physics-enabled scenarios. Com-
pared with other simulation environments, Habitat
2.0 (Szot et al., 2021) shows strength in system
response speed. Habitat is built-in with Matter-
port3D (Chang et al., 2017), Gibson (Xia et al.,
2018) and Replica (Straub et al., 2019) datasets.

AI2-THOR (Kolve et al., 2017) is a near photo-
realistic 3D indoor simulation environment, where
agents could navigate and interact with objects.
Based on the object interaction function, it helps
to build a dataset that requires object manipulation,
such as ALFRED (Shridhar et al., 2020).

Gibson (Xia et al., 2018) is a real-world percep-
tion interactive environment with complex seman-
tics. Each viewpoint has a set of RGB panoramas
with global camera poses and reconstructed 3D
meshes. Matterport3D dataset (Chang et al., 2017)
is also integrated into the Gibson simulator.

House3D (Wu et al., 2018) House3D converts
SUNCG’s static environment into a virtual environ-
ment, where the agent can navigate with physical
constraints (e.g. it cannot pass through walls or
objects)

LANI (Misra et al., 2018) is a 3D simulator built
in Unity3D platform. The environment in LANI is
a fenced, square, grass field containing randomly

placed landmarks. An agent needs to navigate be-
tween landmarks following the natural language
instruction. Drone navigation tasks (Blukis et al.,
2018, 2019) are also built based on LANI.

Currently, most datasets and simulators focus
on indoors navigable scenes partly because of the
difficulty of building an outdoor photo-realistic 3D
simulator out of the increased complexity. Google
Street View 1 an online API that is integrated with
Google Maps and is composed of billions of realis-
tic street-level panoramas. It has been frequently
used to create outdoor VLN tasks since the devel-
opment of TOUCHDOWN (Chen et al., 2019).

C Methods Boundary

In this paper, we categorize methods from data
perspective, i.e., data-centric, and model perspec-
tive. For model perspective, based on cognition
of stages in VLN, we further divide it into two
types: representation learning and action strategy
learning. Although most methods fall into only
one of these three categories, some methods may
involve several ones. First, for some pre-training
based model, it utilized a large pre-training corpus,
which could be data-centric, and it also usually uti-
lize a transformer based structure which has been
proven a better memorization ability for navigation
history. Also, for some methods such as VLN-
BERT (Hong et al., 2021), they only contain one
module which functions as both representing infor-
mation and making navigation decision.

D Room-to-Room Leaderboard

1https://developers.google.com/maps/
documentation/streetview/overview

https://developers.google.com/maps/documentation/streetview/overview
https://developers.google.com/maps/documentation/streetview/overview


Level Name Simulator Language-Active Environment

Level 1

Room-to-Room (Anderson et al., 2018b) Matterport3D 7 Indoor
Room-for-Room (Jain et al., 2019) Matterport3D 7 Indoor

R6R, R8R (Zhu et al., 2020b) Matterport3D 7 Indoor
Room-Across-Room (Ku et al., 2020) Matterport3D 7 Indoor

XL-R2R (Yan et al., 2020) Matterport3D 7 Indoor
VLNCE (Krantz et al., 2020) Habitat 7 Indoor

StreetLearn (Mirowski et al., 2019) Google Street View 7 Outdoor
StreetNav (Hermann et al., 2020) Google Street View 7 Outdoor

TOUCHDOWN (Chen et al., 2019) Google Street View 7 Outdoor
Talk2Nav (Vasudevan et al., 2021) Google Street View 7 Outdoor

Level 2
RoomNav (Wu et al., 2018) House3D 7 Indoor
REVERIE (Qi et al., 2020b) Matterport3D 7 Indoor
SOON (Zhu et al., 2021a) Matterport3D 7 Indoor

Level 3 ALFRED (Shridhar et al., 2020) AI2-THOR 7 Indoor

Level 4
VNLA (Nguyen et al., 2019) Matterport3D 3 Indoor

HANNA (Nguyen and Daumé III, 2019) Matterport3D 3 Indoor
CEREALBAR (Suhr et al., 2019) - 3 Indoor

Just Ask (Chi et al., 2020) Matterport3D 3 Indoor
CVDN (Thomason et al., 2019b) Matterport3D 3 Indoor
NDH (Thomason et al., 2019b) Matterport3D 7 Indoor

RobotSlang (Banerjee et al., 2020) - 3 Indoor
Talk the Walk (de Vries et al., 2018) - 3 Outdoor
TEACh (Padmakumar et al., 2021) AI2-THOR 3 Indoor

Table 2: Vision-and-Language Navigation datasets. Language-Active means the agent needs to use natural lan-
guage for help.

Simulator Photo-realistic 3D

House3D 3 3

Matterport3D 3 3

Habitat 3 3

AI2-THOR 7 3

Gibson 3 3

LANI 7 3

*Google Street View 3 3

Table 3: Common simulators used to build VLN
datasets. *Google Street View is online API, provid-
ing similar function as a simulator for building VLN
datasets.



Leader-Board (Test Unseen) Single Run Pre-explore Beam Search
Models TL↓ NE↓ OSR↑ SR↑ SPL↑ TL↓ NE↓ OSR↑ SR↑ SPL↑ TL↓ NE↓ OSR↑ SR↑ SPL↑
Random 9.89 9.79 0.18 0.13 0.12 - - - - - - - - - -
Human 11.85 1.61 0.90 0.86 0.76 - - - - - - -
Seq-to-Seq (Anderson et al., 2018b) 8.13 20.4 0.27 0.20 0.18 - - - - - - - - - -
RPA (Wang et al., 2018) 9.15 7.53 0.32 0.25 0.23 - - - - - - - - - -
Speaker-Follower (Fried et al., 2018) 14.82 6.62 0.44 0.35 0.28 - - - - - 1257.38 4.87 0.96 0.54 0.01
Chasing Ghosts (Anderson et al., 2019) 10.03 7.83 0.42 0.33 0.30 - - - - - - - - - -
Self-Monitoring (Ma et al., 2019a) 18.04 5.67 0.59 0.48 0.35 - - - - - 373.1 4.48 0.97 0.61 0.02
PTA (Landi et al., 2020) 10.17 6.17 0.47 0.40 0.36 - - - - - - -
RCM !(Wang et al., 2019) 11.97 6.12 0.50 0.43 0.38 9.48 4.21 0.67 0.60 0.59 357.6 4.03 0.96 0.63 0.02
Regretful Agent (Ma et al., 2019b) 13.69 5.69 0.56 0.48 0.40 - - - - - - - - - -
FAST (Liyiming Ke, 2019) 22.08 5.14 0.64 0.54 0.41 - - - - - 196.5 4.29 0.90 0.61 0.03
EGP (Deng et al., 2020) - 5.34 0.61 0.53 0.42 - - - - - - - - - -
ALTR (Huang et al., 2019b) 10.27 5.49 0.56 0.48 0.45 - - - - - - - - -
EnvDrop (Tan et al., 2019) 11.66 5.23 0.59 0.51 0.47 9.79 3.97 0.70 0.64 0.61 686.8 3.26 0.99 0.69 0.01
SERL (Wang et al., 2020b) 12.13 5.63 0.61 0.53 0.49 - - - - - 690.61 3.21 0.99 0.70 0.01
OAAM (Qi et al., 2020a) 10.40 - 0.61 0.53 0.50 - - - - - - - - - -
CMG-AAL (Zhang et al., 2020a) 12.07 3.41 0.76 0.67 0.60 - - - - - - - - -
AuxRN (Zhu et al., 2020a) - 5.15 0.62 0.55 0.51 10.43 3.69 0.75 0.68 0.65 40.85 3.24 0.81 0.71 0.21
DASA (Sun et al., 2021) 10.06 5.11 - 0.54 0.52 - - - - - - - - - -
RelGraph (Hong et al., 2020a) 10.29 4.75 0.61 0.55 0.52 - - - - - - - - - -
ORIST (Qi et al., 2021) 11.31 5.10 - 0.57 0.52 - - - - - - - - - -
PRESS (Li et al., 2019) 10.52 4.53 0.63 0.57 0.53 - - - - - - - - - -
PRRVALENT (Hao et al., 2020) 10.51 5.30 0.61 0.54 0.51 - - - - - - - - - -
NvEM (An et al., 2021) 12.98 4.37 0.66 0.58 0.54 - - - - - - - - - -
SSM (Wang et al., 2021) 20.39 4.57 0.70 0.61 0.46 - - - - - - - - - -
VLN-BERT (Majumdar et al., 2020) - - - - - - - - - - 686.62 3.09 0.99 0.73 0.01
Recurrent VLN BERT (Hong et al., 2021) 12.35 4.09 0.70 0.63 0.57 - - - - - - - - - -
Active Exploration (Wang et al., 2020a) 21.03 4.34 0.71 0.60 0.43 9.85 3.30 0.77 0.70 0.68 176.2 3.07 0.94 0.70 0.05
REM (Liu et al., 2021) 13.11 3.87 0.72 0.65 0.59 - - - - - - - - - -
HAMT(Chen et al., 2021b) 12.27 3.93 0.72 0.65 0.60 - - - - - - - - - -
Spatial Route Prior (Zhou et al., 2021) - - - - - - - - - - 625.27 3.55 0.99 0.74 0.01
Airbert (Guhur et al., 2021) - - - - - - - - - - 686.54 2.58 0.99 0.78 0.01

Table 4: Leaderboard of Room-to-Room benchmark as of November, 2021.


